On the Design of LIL Tests for (Pseudo) Random Generators and Some Experimental Results
نویسنده
چکیده
Random numbers have been one of the most useful objects in statistics, computer science, cryptography, modeling, simulation, and other applications though it is very difficult to construct true randomness. Many solutions (e.g., cryptographic pseudorandom generators) have been proposed to harness or simulate randomness and many statistical testing techniques have been proposed to determine whether a pseudorandom generator produces high quality randomness. NIST SP800-22 (2010) proposes the state of art testing suite for (pseudo) random generators to detect deviations of a binary sequence from randomness. On the one hand, as a counter example to NIST SP800-22 test suite, it is easy to construct functions that are considered as GOOD pseudorandom generators by NIST SP800-22 test suite though the output of these functions are easily distinguishable from the uniform distribution. Thus these functions are not pseudorandom generators by definition. On the other hand, NIST SP800-22 does not cover some of the important laws for randomness. Two fundamental limit theorems about random binary strings are the central limit theorem and the law of the iterated logarithm (LIL). Several frequency related tests in NIST SP800-22 cover the central limit theorem while no NIST SP800-22 test covers LIL. This paper proposes techniques to address the above challenges that NIST SP800-22 testing suite faces. Firstly, we propose statistical distance based testing techniques for (pseudo) random generators to reduce the above mentioned Type II errors in NIST SP800-22 test suite. Secondly, we propose LIL based statistical testing techniques, calculate the probabilities, and carry out experimental tests on widely used pseudorandom generators by generating around 30TB of pseudorandom sequences. The experimental results show that for a sample size of 1000 sequences (2TB), the statistical distance between the generated sequences and the uniform distribution is around 0.07 (with 0 for statistically indistinguishable and 1 for completely distinguishable) and the root-mean-square deviation is around 0.005. Though the statistical distance 0.07 and RMSD 0.005 are acceptable for some applications, for a cryptographic “random oracle”, the preferred statistical distance should be smaller than 0.03 and RMSD be smaller than 0.001 at the sample size 1000. These results justify the importance of LIL testing techniques designed in this paper. The experimental results in this paper are reproducible and the raw experimental data are available at author’s website.
منابع مشابه
On statistical distance based testing of pseudo random sequences and experiments with PHP and Debian OpenSSL
NIST SP800-22 (2010) proposed the state of the art statistical testing techniques for testing the quality of (pseudo) random generators. However, it is easy to construct natural functions that are considered as GOOD pseudorandom generators by the NIST SP800-22 test suite though the output of these functions is easily distinguishable from the uniform distribution. This paper proposes solutions t...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملUsing GLFSRs for Pseudo-Random Memory BIST
In this work, we present the application of Generalized Linear Feedback Shift Registers (GLFSRs) for generation of patterns for pseudo-random memory Built-In SelfTest (BIST). Recently, it was shown that using GLFSRs as pattern generators for pseudo-random logic tests can increase the fault coverage noticeably in comparison to standard pseudo-random test pattern generators. Since memory faults d...
متن کاملTesting PRNG's for use in a GA
In this paper, the results of some tests including the Chi-Square and the Diehard Battery tests of randomness on some pseudo random number generators are given. The generators were chosen for use in a Genetic Algorithm (GA) package called GAGENES, written in object-oriented C++. The influence of PRNG's on a GA is discussed briefly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014